字首質式之一般表示式的特徵

1趙有光 2黃政治

¹國立勤益技術學院通識教育中心 ²中山醫學大學通識教育中心

摘要

質式字之基本組合性質在正規言語理論中扮演著相當重要的角色。 本文探討類似於質式字的字首質式字。字首質式的性質被應用於檢 核一組資料在設計一類神經網路時是否造成收斂。本文整理出兩個 不同的字 u 與 v 之特徵,其中 u 的字長小於 v 的字長,使得 u v 的一般表示式爲字首質式。

關鍵字:質式字;字首質式字

A Note of P-Primitive Regular Expressions

C.C. HUANG^a and YU-KUANG ZHAO^{b,*}

^a Department of General Education, Chung-Shan Medical University, Taichung, Taiwan

b Liberal Arts Center, National Chin-Yi Institute of Technology, Taichung, Taiwan

Abstract: Primitive words play a very important role in formal language theory for their elementary combinatorial properties. Analogous to primitive words, we consider p-primitive words. P-primitivities are applied to check whether a neural network converges for a set of data. In this note we characterize p-primitive words u and words v, where $\lg(u) < \lg(v)$, such that the regular expression uv^+ is p-primitive.

Keywords: Primitive word; p-primitive word

1. Introduction

Let X be an alphabet which contains more than one letter. Let X^* be the free monoid generated by X and $X^+ = X^* \setminus \{1\}$ where 1 is the empty word. For a word $u \in X^*$, let $\lg(u)$ denote the length of u. For $u, v \in X^+$, u is called a power of v if $u = v^n$ for some integer $n \geq 1$. A nonempty word u is called primitive if u is not a power of any other word. It is known that every word $u \in X^+$ is a power of a unique primitive word ([1]). If $u = xy, x, y \in X^*$, then x is called a prefix of u, denoted by $x \leq_p u$. If $x \neq u$, then x is said to be a proper prefix of u, denoted by $x <_p u$. A word w has a prefix n-power if $w \in u^n X^*$ for some $u \in X^+$. For $w \in X^+$, let N(w) denote the maximal number n such that w has a prefix n-power. For any $i \geq 1$, we define $P_i(X)$ as $P_i(X) = \{w \in X^+ \mid N(w) = i\}$. From the definition, it is clear that $P_i(X) \cap P_j(X) = \emptyset$ for every $i \neq j$ and $X^+ = \bigcup_{i \geq 1} P_i(X)$. Every word w in $P_1(X)$ is called prefix primitive (shortly, p-primitive), i.e., $w \notin u^2 X^*$ for any $u \in X^+$. Let $X = \{a, b\}$. Then ab^n is a p-primitive word over X for any $n \geq 1$.

In this paper we investigate that for any two distinct words u and v, where $u \in P_1(X)$ and $\lg(u) < \lg(v)$, whether or not uv^+ is p-primitive. A language in this form uv^+w for some $u, v, w \in X^*$ is called a regular component ([3]). In section 2, Proposition 2.1 to Proposition 2.3 are concerned that some characters of words u and v which lead uv^n is not a p-primitive word. On the contrary, if uv^n is not a p-primitive word, then u and v must be those character of words. Proposition 2.4 show that if $uv^n \in P_1(X)$, for $n \leq 3$, then $uv^n \in P_1(X)$ for all $n \geq 4$.

The following two lemmata concerning the basic properties of the catenation and decompositions of words will be needed in the sequel.

Lemma 1.1 ([1]) If uv = vu, $u, v \in X^+$, then u and v are powers of a common word.

Lemma 1.2 ([1]) If uv = vz, $u, v, z \in X^*$ and $u \neq 1$, then u = xy, $v = (xy)^k x$, z = yx for some $x, y \in X^*$ and $k \geq 0$.

^{*} Corresponding author.

2. Main Results

It is known that if $uv^i \notin P_1(X)$, then $uv^j \notin P_1(X)$, for all j > i. Therefore, if we are going to discuss whether or not uv^j is a p-primitive word, we first assume that uv^i is a p-primitive word, for all i < j. Now, we give a characterization of words uv^n being p-primitive for all $n \le 3$.

Proposition 2.1 For any two distinct words u, v, where $u \in P_1(X)$ and $\lg(u) < \lg(v)$. Then uv is not a p-primitive word if and only if one of the following three statements holds:

- (1) $u <_{p} v$,
- (2) $u = x_1 x_2 x_1$ for some $x_1, x_2 \in X^+$ with $x_2 <_p v$,
- (3) v = x₁ux₁x₂ for some x₁, x₂ ∈ X⁺.

Proof. (\Rightarrow) As uv is not a p-primitive word, $uv=x^2y$ for some $x\in X^+$ and $y\in X^*$. As $uv=x^2$, $\lg(u)<\lg(x)$. There exists $x_1\in X^+$ such that $x=ux_1$. Thus $v=x_1x=x_1ux_1$. The assertion with statement (3) holds, where x_2 is an empty word. As $uv=x^2y$ for some $x,y\in X^+$, if $\lg(y)\geq \lg(v)$, then $x^2\leq_p u$. This leads to a contradiction. Hence $\lg(y)<\lg(v)$. Let $v=v_1y$, where $v_1,y\in X^+$. As $uv=uv_1y=x^2y$, we get $uv_1=x^2$. If $\lg(u)=\lg(v_1)$, then $u=v_1=x$. This yileds $u<_p v$. The assertion with statement (1) holds. If $\lg(u)<\lg(v_1)$, then $\lg(u)<\lg(x)$. There exists $x_1\in X^+$ such that $x=ux_1$. This yields $v_1=x_1x=x_1ux_1$, $v=x_1ux_1y$. The assertion with statement (3) holds, where $x_2=y$. If $\lg(u)>\lg(v_1)$, then $\lg(u)>\lg(x)$. There exists $x_1\in X^+$ such that $u=xx_1$. Then $x=x_1x_2$, where $x_2\in X^+$. We get $u=x_1x_2x_1$. Since $uv=x^2y=(x_1x_2)^2y=ux_2y$. This yields $x_2<_p v$. The assertion with statement (2) holds.

(⇐) Immediate. ■

Proposition 2.2 For any two distinct words u, v, where $u, uv \in P_1(X)$ and $\lg(u) < \lg(v)$. Then uv^2 is not a p-primitive word if and only if one of the following statements holds:

- (1) $u=x_1x_2x_3$ and $v=x_3x_4x_1x_2$ for some $x_1,x_3,x_4\in X^+$ and $x_2\in X^*$ with $x_3x_4=x_4x_1$,
- (2) $v = x_1x_2x_3ux_1$ for some $x_1, x_3 \in X^+$ and $x_2 \in X^*$ with $x_1x_2 = x_2x_3$,
- (3) $v = x_1x_2x_1ux_1x_2$ for some $x_1 \in X^+$ and $x_2 \in X^*$,
- (4) $v = x_1 u$ for some $x_1 \in X^+$.

Proof. (\Rightarrow) As uv^2 is not a p-primitive word, $uv^2 = x^2y$ for some $x \in X^+$ and $y \in X^*$. As $uv^2 = x^2$, $\lg(x) < \lg(uv)$. There exist $v_1, v_2 \in X^+$ such that $x = uv_1 = v_2v_1v_2$, where $v = v_1v_2$. Thus $\lg(u) = 2\lg(v_2)$. As $v_2 <_p u$, there exists $u_1 \in X^+$ such that $u = v_2u_1$. This yields $\lg(u_1) = \lg(v_2)$. Since $\lg(u) < \lg(v)$, $\lg(u_1) < \lg(v_1)$. This yields $u_1 <_p v_1$. Then there exists $v_3 \in X^+$ such that $v_1 = u_1v_3$. As $x = v_2u_1v_1 = v_2v_1v_2$, $v_2u_1u_1v_3 = v_2u_1v_3v_2$. This implies that $u_1v_3 = v_3v_2$. Hence $u = v_2u_1$, $v = u_1v_3v_2$ and $u_1v_3 = v_3v_2$. The assertion with statement (1) holds, where $x_1 = v_2, x_3 = u_1, x_4 = v_3$ and x_2 is an empty word. As $uv^2 = x^2y$ for some $x, y \in X^+$, if $\lg(y) \ge \lg(v)$, then $x^2 \le_p uv$. This leads to a contradiction. Hence $\lg(y) < \lg(v)$. Let $v = v_1y$, where $v_1, y \in X^+$. Then $x^2 = uv_1yv_1$. Consider the following cases:

- (1) $\lg(x) = \lg(uv_1)$. Then u = y and $v = v_1u$. The assertion with statement (4) holds, where $x_1 = v_1$.
- (2) $\lg(x) < \lg(uv_1)$. There exist $v_2, v_3 \in X^+$ such that $v_1 = v_2v_3$ and $x = uv_2 = v_3yv_2v_3$. If $\lg(v_2) = \lg(v_3)$, then $v_2 = v_3$. We get $u = v_2yv_2$ and $v = v_2v_2y$. Hence $\lg(u) = \lg(v)$. This contradicts the fact that $\lg(u) < \lg(v)$. If $\lg(v_2) < \lg(v_3)$, then there exists $v_4 \in X^+$ such that $v_3 = v_4v_2$. We can get $u = v_3yv_2v_4$ and $v = v_2v_3y$. Hence $\lg(u) > \lg(v)$. This also contradicts the fact that $\lg(u) < \lg(v)$. Then $\lg(v_2) > \lg(v_3)$. As $v_2 <_s x$ and $v_3 <_s x$. Then there exist $v_4, v_5 \in X^+$ such that $v_2 = v_4v_5 = v_5v_3$, we get $u = v_3yv_4$ and $v = v_4v_5v_3y$. The assertion with statement (1) holds, where $v_1 = v_3, v_2 = y, v_3 = v_4, v_4 = v_5$.
- (3) $\lg(x) > \lg(uv_1)$. There exist $v_2, v_3 \in X^+$ such that $y = v_2v_3$ and $x = uv_1v_2 = v_3v_1$. Thus $\lg(u) < \lg(v_3)$ and $v = v_1v_2v_3$. If $\lg(v_1) = \lg(v_2)$, then $v_1 = v_2$. As $x = uv_1v_2 = uv_1v_1 = v_3v_1$, we get $v_3 = uv_1$. Thus $v = v_1v_2v_3 = v_1v_1uv_1$. The assertion with statement (2) holds, where $x_1 = x_3 = v_1$ and x_2 is an empty word. If $\lg(v_1) > \lg(v_2)$, then there exist $v_4, v_5 \in X^+$ such that $v_1 = v_4v_2 = v_5v_4$. As $x = uv_1v_2 = v_3v_1$, $uv_4v_2v_2 = v_3v_4v_2$. As $\lg(u) < \lg(v_3)$, $v_3 = uv_5$. Hence $v = v_1v_2v_3 = v_4v_2v_2uv_5 = v_5v_4v_2uv_5 = v_5v_5v_4uv_5$. The assertion with statement (2) holds, where $x_1 = v_5, x_2 = v_4$ and $x_3 = v_2$. If $\lg(v_1) < \lg(v_2)$, then there exists $v_4 \in X^+$ such that $v_2 = v_4v_1$. Thus $x = uv_1v_2 = uv_1v_4v_1 = v_3v_1$. This yields $v_3 = uv_1v_4$. Hence $v = v_1v_2v_3 = v_1v_4v_1uv_1v_4$. The assertion with statement (3) holds, where $x_1 = v_1, x_2 = v_4$.

(⇐) Immediate. ■

Proposition 2.3 For any two distinct words u, v, where $u, uv, uv^2 \in P_1(X)$ and $\lg(u) < \lg(v)$. Then uv^3 is not a p-primitive word if and only if one of the following statements holds:

- (1) $u = x_1x_2x_2x_3x_1$ and $v = (x_2x_3x_1)^kx_2$ for some $x_1, x_2, x_3 \in X^+$ and k = 2, 3, 4 with $x_3 \leq_p x_2$,
- (2) $u = x_1 x_2 x_1 x_3$ and $v = (x_2 x_1 x_3)^2 x_2 x_1$ for some $x_1, x_2, x_3 \in X^+$ with $x_3 x_2 <_p x_2 x_1 x_3$,
- (3) $u = x_2x_4x_3x_4x_1$ and $v = (x_3x_4x_1)^kx_3x_4$ for some $x_1, x_2, x_3 \in X^+$ and $x_4 \in X^*$ with $x_1 = w_1w_2, x_2 = w_2w_1$ and $x_3 = (w_1w_2)^{n+i}w_1$, where $w_1, w_2, w_3 \in X^+$, i = 1, 2 and k = 2, 3, 4,
- (4) $u = x_3x_1x_2x_3$ and $v = (x_2x_3)^kx_1$ for some $x_1, x_2 \in X^+$ and $x_3 \in X^*$ with $x_1 = w_1w_2$ and $x_2 = (w_1w_2)^{n+i}w_1$, where $w_1, w_2, w_3 \in X^+$, i = 1, 2 and k = 2, 3, 4.

Proof. (\Rightarrow) As uv^3 is not a p-primitive word, $uv^3 = x^2y$ for some $x \in X^+$ and $y \in X^*$. As $uv^3 = x^2$, $\lg(uv) < \lg(x)$. There exist $v_1, v_2 \in X^+$ such that $x = uv_1v_2v_1 = v_2v_1v_2$, where $v = v_1v_2$. If $\lg(v_1) \ge \lg(v_2)$, then $\lg(u) \le 0$. This leads to a contradiction. Thus $\lg(v_1) < \lg(v_2)$. As $v_1 <_s x$ and $v_2 <_s x$, there exists $v_3 \in X^+$ such that $v = v_1v_2 = v_1v_3v_1$. The equalities $x = uv_1v_2v_1 = v_2v_1v_2$ imply that $uv_1v_3v_1v_1 = v_3v_1v_1v_3v_1$. Thus we can get $u = v_3$. Hence $(uv_1)^2 \le_p uv$. This leads to a contradiction. Suppose $\lg(y) \ge \lg(v)$. Then $uv^3 = x^2y$ for some $x, y \in X^+$ implies $x^2 \le_p uv^2$. This leads to a contradiction. Hence $\lg(y) < \lg(v)$. Let $v = v_1y$ for some $v_1, y \in X^+$. If $\lg(x) = \lg(uv)$, then $\lg(u) = \lg(v_1)$. As $u <_p v$ and $v_1 <_p v$, we get $u = v_1$. Hence $(v_1)^2 <_p uv$. This leads to a contradiction. If $\lg(x) > \lg(uv)$, then there exists $v_2, v_2^* \in X^+$ such that $x = uvv_2$ and $v = v_2v_2^*$. As

- $\lg(x) = \lg(uv_2v_2^*v_2) = \lg(v_2^*v_1)$, we get $2\lg(v_2) < \lg(v_1)$. As $v_2 <_p v$ and $v_2 <_s v_1$. Then we can get $v_1 = v_2v_3v_2$, where $v_3 \in X^+$. Thus $v = v_2v_3v_2y$ and $v_2^* = v_3v_2y$. As $\lg(x) = \lg(uv_2v_3v_2yv_2) = \lg(v_3v_2yv_2v_3v_2)$, we get $u = v_3$. Hence $(v_3v_2)^2 <_p uv$. This leads to a contradiction. Therefore $\lg(x) < \lg(uv)$. Then there exists $v_2 \in X^+$ such that $uv = xv_2$ and $\lg(v_2) < \lg(u)$. As $v_2 <_p u$, $u = v_2u_1$ for some $u_1 \in X^+$. If $v = v_1v_2$, then $x = v_2vv_1 = (v_2v_1)^2$. This leads to a contradiction. If $\lg(v) < \lg(v_1v_2)$, then there exists $v_3^* \in X^+$ such that $v = v_3^*v_2$. Thus $\lg(v_3^*) < \lg(v_1)$. As $\lg(x) = \lg(v_2u_1v_3^*) = \lg(v_2v_3^*v_2v_1)$, we can get $\lg(u_1) = \lg(v_2v_1) > \lg(v)$. This leads to a contradiction. Therefore $\lg(v) > \lg(v_1v_2)$. As $v_1v_2 <_s v$, there exists $v_3 \in X^+$ such that $v = v_3v_1v_2$. Consider the following cases:
- (1-1) $\lg(v_1) > \lg(v_3)$. Then there exists $v_4 \in X^+$ such that $v_1 = v_3v_4$. If $\lg(v_2) = \lg(v_3)$, then $v_2 = v_3$. As $\lg(x) = \lg(v_2u_1v_3v_1) = \lg(v_2v_3v_1v_2v_1)$, $\lg(u_1) = \lg(v_2v_1) = \lg(v_2v_3v_4)$. Thus $v_3 <_p u_1$. Therefore $(v_2)^2 <_p u$. This leads to a contradiction. If $\lg(v_2) > \lg(v_3)$, then $\lg(u_1) > \lg(v_3v_3v_4)$. Thus $\lg(u) = \lg(v_2u_1) = \lg(v_2v_2v_3v_4) > \lg(v_2v_3v_3v_4) = \lg(v)$. This leads to a contradiction. We must have $\lg(v_2) < \lg(v_3)$. As $\lg(v_1y) = \lg(v) > \lg(v_1) + \lg(v_2)$, there exists $v_5 \in X^+$ such that $y = v_5v_2$. Thus $v = v_1y = v_3v_4v_5v_2$. From $v = v_3v_3v_4v_2$, we get $\lg(v_5) = \lg(v_3)$. Hence there exist $v_6, v_7 \in X^+$ such that $v_5 = v_6v_7$ and $v_3 = v_7v_2$. This implies that $u_1 = v_3v_4v_6 = v_7v_2v_4v_6$. If $\lg(v_4) \ge \lg(v_5)$. Then $v_3^2 <_p u_1$, $v_2v_3^2 <_p u$, i.e., $(v_2v_7)^2 <_p u$. This leads to a contradiction. If $\lg(v_4) < \lg(v_5)$. Since $v_4v_6v_7 = v_3v_4 = v_7v_2v_4$ and $v_2v_7v_2v_4v_6v_7 <_p uv$. Thus $(v_2v_7)^2 <_p uv$. Again, this leads to a contradiction.
- (1-2) $\lg(v_1) = \lg(v_3)$. As $v_1 <_p v$ and $v_3 <_p v$, $v_1 = v_3$ and $v = v_3v_1v_2 = v_3v_3v_2$. If $\lg(v_3) = \lg(v_2)$. As $x = v_2u_1v_3v_1 = v_2v_3v_1v_2v_1$, $v_3 = v_2$. This implies that $u_1 = v_3v_1$. Hence $u = v_2u_1 = v_3v_3v_3$. This leads to a contradiction. If $\lg(v_3) > \lg(v_2)$, then there exist $v_4, v_5 \in X^+$ such that $v_3 = v_4v_2 = v_5v_4$ and $u_1 = v_4v_2v_5$. This in conjunction with $u = v_2u_1$ and $v = u_1v_3 = v_3v_3v_2$ implies that $uv = v_2u_1v_3v_3v_2 = v_2v_3v_3v_2v_3v_2 = (v_2v_4)^2v_2v_2v_4v_2v_2$. This leads to a contradiction. If $\lg(v_3) < \lg(v_2)$, then there exists $v_4 \in X^+$ such that $v_2 = v_4v_3$. This implies that $u = v_2u_1 = v_4v_3v_3v_3v_4$ and $v = v_3v_3v_4v_3$. Thus $\lg(u) > \lg(v)$. This leads to a contradiction.
- (1-3) $\lg(v_1) < \lg(v_3)$. As $v_1 <_p v$ and $v_3 <_p v$, there exists $v_4 \in X^+$ such that $v_3 = v_1v_4$. If $\lg(v_2) = \lg(v_4)$, then $v_2 = v_4$. Thus $u_1 = v_3 = v_1v_2$ and $v = (v_1v_2)^2$. This implies that $uv = v_2u_1v = (v_2v_1)^3v_2$. This leads to a contradiction. Suppose $\lg(v_2) > \lg(v_4)$. If $\lg(v_2) = \lg(v_1v_4)$, then $v_2 = v_1v_4$. Thus $u_1 = v_3v_1 = v_1v_4v_1$. This implies that $u = v_2u_1 = (v_1v_4)^2v_1$. This leads to a contradiction. If $\lg(v_2) > \lg(v_1v_4)$, then $\lg(u_1) > \lg(v_3v_1)$. Thus $\lg(u) = \lg(v_2u_1) > \lg(v_2v_3v_1) = \lg(v)$. This leads to a contradiction. If $\lg(v_2) < \lg(v_1v_4)$, then $\lg(u_1) = \lg(v_1v_2) > \lg(v_1v_4)$ implies that there exist $v_5, v_6, v_7 \in X^+$ such that $u_1 = v_1v_4v_5, v_1 = v_5v_6 = v_6v_7$ and $v_2 = v_7v_4$. Thus $u = v_2u_1 = v_2v_1v_4v_5 = v_7v_4v_6v_7v_4v_5$ and $v = v_6v_7v_4v_5v_6v_7v_4$. This implies that $(v_7v_4v_6)^2 <_p uv$. This leads to a contradiction. Therefore $\lg(v_2) < \lg(v_4)$. Then there exists $v_5 \in X^+$ such that $v_4 = v_5v_2$. Hence $v_3 = v_1v_5v_2$. As $v = u_1v_3 = v_3v_1v_2$, $u_1v_1v_5v_2 = v_1v_5v_2v_1v_2$. Thus $v_1 <_p u_1$. Then there exists $v_6 \in X^+$ such that $u_1 = v_1v_6$. Therefore $v_1v_6v_1v_5v_2 = v_1v_5v_2v_1v_2$. So we can get $v_6v_1v_5 = v_5v_2v_1$. Consider the following subcases:

- (1-3-1) $\lg(v_6) = \lg(v_5)$. Then $v_6 = v_5$ and $v_1v_6 = v_1v_5 = v_2v_1$. This implies that $u = v_2u_1 = v_2v_1v_6 = v_2v_2v_1$. This leads to a contradiction.
- (1-3-2) $\lg(v_1) = \lg(v_5)$. Then $v_1 = v_5$. If $\lg(v_1) = \lg(v_2)$, then $v_1 = v_2 = v_5 = v_6$. Thus $u = v_2u_1 = v_2v_1v_6 = (v_1)^3$. This leads to a contradiction. If $\lg(v_1) < \lg(v_2)$, then there exists $v_7 \in X^+$ such that $v_2 = v_7v_1$ and $v_6 = v_5v_7 = v_1v_7$. So $u_1 = v_1v_6 = v_1v_1v_7$. Thus $u = v_2u_1 = v_7v_1v_1v_1v_7$ and $v = u_1v_1v_5v_2 = (v_1v_1v_7)^2v_1$. The assertion with statement (1) holds, where $x_1 = v_7, x_2 = x_3 = v_1$ and k = 2. If $\lg(v_1) > \lg(v_2)$, then there exist $v_7 \in X^+$ such that $v_1 = v_5 = v_7v_2 = v_6v_7$. Thus there exist $w_1, w_2 \in X^+$, $n \ge 0$ such that $v_6 = w_1w_2$, $v_7 = (w_1w_2)^nw_1$ and $v_7 = w_2w_1$. Hence $u = v_2u_1 = v_2v_1v_6 = w_2w_1(w_1w_2)^{n+1}w_1w_1w_2$ and $v = v_1v_5v_2v_1v_2 = ((w_1w_2)^{n+1}w_1w_1w_2)^2(w_1w_2)^{n+1}w_1$. The assertion with statement (3) holds, where x_4 is an empty word, i = 1 and k = 2.
- (1-3-3) $\lg(v_1) = \lg(v_2)$. Then $\lg(v_1) = \lg(v_2) = \lg(v_6)$. If $\lg(v_5) = \lg(v_6)$, by an analogous argument as case (1-3-1), then this leads to a contradiction. If $\lg(v_5) > \lg(v_6)$, then there exist $v_7, v_8, v_9 \in X^+$ such that $v_5 = v_6 v_7, v_1 = v_7 v_8$ and $v_2 = v_8 v_9$. This implies that $v_5 = v_6 v_7 = v_9 v_1 = v_9 v_7 v_8$. Case 1: $\lg(v_7) = \lg(v_8)$. Then $v_7 = v_8$ and $v_6 = v_9 v_7$. Thus $v_2 = v_7 v_9$ and $u_1 = v_1 v_6 = v_7 v_7 v_9 v_7$. This implies that $u = v_2 u_1 = (v_7 v_9 v_7)^2$. This leads to a contradiction. Case 2: $\lg(v_7) < \lg(v_8)$. Then there exists $v_{10} \in X^+$ such that $v_8 = v_{10}v_7$. This implies that $v_5 = v_6v_7 = v_9v_7v_{10}v_7$. Thus $v_6 = v_9v_7v_{10}$ and $u_1 = v_1 v_6 = v_7 v_{10} v_7 v_9 v_7 v_{10}$. This implies that $u = v_2 u_1 = v_8 v_9 u_1 = (v_{10} v_7 v_9 v_7)^2 v_{10}$. This leads to a contradiction. Case 3: $\lg(v_7) > \lg(v_8)$. Then there exist $v_{10}, v_{11} \in X^+$ such that $v_7 = v_{10}v_{11} = v_{11}v_8$. So there exist $w_1, w_2 \in X^+$, $n \geq 0$ such that $v_{10} =$ w_1w_2 , $v_{11}=(w_1w_2)^nw_1$ and $v_8=w_2w_1$. Thus $v_7=(w_1w_2)^{n+1}w_1$, $v_6=v_9w_1w_2$ and $u_1 = (w_1 w_2)^{n+2} w_1 v_9 w_1 w_2$. Hence $u = v_2 u_1 = v_2 v_1 v_7 = w_2 w_1 v_9 (w_1 w_2)^{n+2} w_1 v_9 w_1 w_2$ and $v = v_1 v_5 v_2 v_1 v_2 = ((w_1 w_2)^{n+2} w_1 v_9 w_1 w_2)^2 (w_1 w_2)^{n+2} w_1 v_9$. The assertion with statement (3) holds, where $x_4 = v_9$, i = 2 and k = 2. If $\lg(v_5) < \lg(v_6)$, then there exist $v_7, v_8, v_9 \in X^+$ such that $v_6 = v_5 v_7, v_2 = v_7 v_8$ and $v_1 = v_8 v_9$. This implies that $v_1 = v_8 v_9 = v_9 v_5$. So there exist $w_1, w_2 \in X^+$, $n \geq 0$ such that $v_8 =$ w_1w_2 , $v_9=(w_1w_2)^nw_1$ and $v_5=w_2w_1$. Thus $v_1=(w_1w_2)^{n+1}w_1$ and $u_1=v_1v_6=v_1v_1$ $v_1v_5v_2v_1v_2 = ((w_1w_2)^{n+2}w_1v_7)^2w_1w_2$. The assertion with statement (4) holds, where $x_3 = v_7, i = 2 \text{ and } k = 2.$

- Hence $u = v_2 v_1 v_6 = v_{10} v_9 v_1 v_8 v_{10} = v_{10} w_1 w_2 (w_1 w_2)^{n+1} w_1 v_{10}$ and $v = v_1 v_5 v_2 v_1 v_2 = v_1 v_6 v_7 v_2 v_1 v_2 = ((w_1 w_2)^{n+1} w_1 v_{10})^3 w_1 w_2$. The assertion with statement (4) holds, where $x_3 = v_{10}$, i = 1 and k = 3.
- (1-3-5) $\lg(v_1) < \lg(v_5) < \lg(v_2)$. Then there exist $v_7, v_8 \in X^+$ such that $v_5 = v_7v_1$, $v_2 = v_8v_1v_7$ and $v_6 = v_5v_8$. Hence $u = v_8v_1v_7v_1v_7v_1v_8$ and $v = (v_1v_7v_1v_8)^2v_1v_7$. The assertion with statement (1) holds, where $x_1 = v_8$, $x_2 = v_1v_7$, $x_3 = v_1$ and k = 2.
- $(1-3-6) \lg(v_2) < \lg(v_1) < \lg(v_5)$. If $\lg(v_5) = \lg(v_6v_1)$, then $v_5 = v_6v_1 = v_2v_1$. This implies that $v_6 = v_2$. Thus $u = v_2 v_1 v_6 = v_2 v_1 v_2$. Hence $(v_2 v_1)^2 <_p uv$. This leads to a contradiction. If $\lg(v_5) < \lg(v_6v_1)$, then there exist $v_7, v_8 \in X^+$ such that $v_1 = v_7v_8$, $v_5 = v_6 v_7 = v_9 v_1 = v_9 v_7 v_8$ and $v_2 = v_8 v_9$. Thus $u = v_2 v_1 v_6 = v_8 v_9 v_7 v_8 v_6$. Therefore $uv_1 = v_8 v_9 v_7 v_8 v_6 v_7 v_8 = (v_8 v_9 v_7)^2 v_8 v_8$. Since $uv_1 <_p uv$. Hence $(v_8 v_9 v_7)^2 <_p uv$. This leads to a contradiction. Therefore $\lg(v_5) > \lg(v_6v_1)$. Then there exists $v_7 \in X^+$ v_1v_7 . Thus there exist $w_1, w_2 \in X^+$ such that $v_2 = w_1w_2, v_1 = (w_1w_2)^n w_1$ and $v_7 = w_2 w_1$. Hence $(w_1 w_2)^2 <_{\mathbf{p}} u$. This leads to a contradiction. If $\lg(v_6) > \lg(v_7)$, then there exist $v_8, v_9, v_{10} \in X^+$ such that $v_6 = v_7 v_8, v_2 = v_8 v_9$ and $v_1 = v_9 v_{10} =$ $v_{10}v_7$. Thus there exist $w_1, w_2 \in X^+$ such that $v_9 = w_1w_2, v_{10} = (w_1w_2)^nw_1$ and $((w_1w_2)^{n+2}w_1v_8)^3w_1w_2$. The assertion with statement (4) holds, where $x_3=v_8$, i=2and k=3. If $\lg(v_6)<\lg(v_7)$, then there exist $v_8\in X^+$ such that $v_7=v_6v_8$ and $v_1v_7=v_8v_8$ $v_8v_2v_1$. Thus $v_1v_6v_8 = v_8v_2v_1$. If $\lg(v_1) = \lg(v_8)$, then $v_1 = v_8$ and $v_2 = v_6$. Thus $u = v_2 v_1 v_6 = v_2 v_1 v_2$. Since $uv_1 <_p uv$, $(v_2 v_1)^2 <_p uv$. This leads to a contradiction. If $\lg(v_1) < \lg(v_8)$, then there exist $v_9, v_{10}, v_{11} \in X^+$ such that $v_8 = v_1 v_9 = v_{10} v_1$, $v_6 = v_9 v_{11}$ and $v_2 = v_{11} v_{10}$. Thus there exist $w_1, w_2 \in X^+$ such that $v_{10} = w_1 w_2$, $v_1 = (w_1 w_2)^n w_1$ and $v_9 = w_2 w_1$. Hence $u = v_2 v_1 v_6 = v_{11} w_1 w_2 (w_1 w_2)^{n+1} w_1 v_{11}$ and $v = v_1 v_5 v_2 v_1 v_2 = ((w_1 w_2)^{n+1} w_1 v_{11})^4 w_1 w_2$. The assertion with statement (4) holds, where $x_3 = v_{11}$, i = 1 and k = 4. If $\lg(v_1) > \lg(v_8)$, then there exist $v_9, v_{10}, v_{11} \in$ X^+ such that $v_1 = v_8 v_9$, $v_2 = v_9 v_{10}$, $v_6 = v_{10} v_{11}$. Therefore $v_1 = v_{11} v_8 = v_8 v_9$. Thus there exist $w_1, w_2 \in X^+$ such that $v_{11} = w_1 w_2, v_8 = (w_1 w_2)^n w_1$ and $v_9 =$ w_2w_1 . Hence $u = v_2v_1v_6 = w_2w_1v_{10}(w_1w_2)^{n+1}w_1v_{10}w_1w_2$ and $v = v_1v_5v_2v_1v_2 =$ $((w_1w_2)^{n+1}w_1v_{10}w_1w_2)^3(w_1w_2)^{n+1}w_1v_{10}$. The assertion with statement (3) holds, where $x_4 = v_{10}$, i = 1 and k = 3.
- (1-3-7) $\lg(v_2) < \lg(v_5) < \lg(v_1)$. As $v_6v_1v_5 = v_5v_2v_1$, there exist $v_7, v_8 \in X^+$ such that $v_5 = v_6v_7$, $v_1 = v_7v_2v_8 = v_8v_5 = v_8v_6v_7$. Thus we can get $v_7v_2v_8v_6 = v_8v_6v_7v_6$. Hence $u = v_2v_1v_6 = v_2v_7v_2v_8v_6$ and $v = v_1v_5v_2v_1v_2 = (v_7v_2v_8v_6)^2v_7v_2$. The assertion with statement (2) holds, where $x_1 = v_2, x_2 = v_7$ and $x_3 = v_8v_6$.
- (1-3-8) $\lg(v_5) < \lg(v_2) < \lg(v_1)$ and $\lg(v_5) < \lg(v_1) < \lg(v_2)$. As $v_6v_1v_5 = v_5v_2v_1$, there exist $v_7, v_8, v_9 \in X^+$ such that $v_6 = v_5v_7$ and $v_2 = v_7v_8$ and $v_1 = v_8v_9 = v_9v_5$. Therefore there exist $w_1, w_2 \in X^+$, $n \ge 0$ such that $v_8 = w_1w_2$, $v_9 = (w_1w_2)^nw_1$ and $v_5 = w_2w_1$. Hence $u = v_2v_1v_6 = v_7v_8v_1v_5v_7 = v_7w_1w_2(w_1w_2)^{n+2}w_1v_7$ and $v = v_1v_5v_2v_1v_2 = ((w_1w_2)^{n+2}w_1v_7)^2w_1w_2$. The assertion with statement (4) holds, where $x_3 = v_7$, i = 2 and k = 2.

(⇐) Immediate. ■

Next, we show that uv^n are p-primitive words for all $n \geq 4$ for any two distinct words

u, v with $u, uv, uv^2, uv^3 \in P_1(X)$ and $\lg(u) < \lg(v)$.

Proposition 2.4 Let u, v be two distinct words such that $u, uv, uv^2, uv^3 \in P_1(X)$ and $\lg(u) < \lg(v)$. Then $uv^n \in P_1(X)$ for all $n \ge 4$.

Proof. As uv^n is not a p-primitive word for all $n \geq 4$, $uv^n = x^2y$ for some $x \in X^+$ and $y \in X^*$. As $uv^n = x^2$. Then either $x = uv^iv_1 = v_2v^i$ or $x = uv^iv_1 = v_2v^{i+1}$ may occur, where $v = v_1 v_2$, $v_1, v_2 \in X^+$ and i > 0. Suppose $x = uv^i v_1 = v_2 v^i$. Then $v_2 = uv_1$. Thus $uv = uv_1v_2 = (uv_1)^2$. This leads to a contradiction. Suppose $x = uv^iv_1 = v_2v^{i+1}$, where 2i + 2 = n. Therefore $\lg(u) = 2\lg(v_2)$. As $v_2 <_p x$ and $u <_p x$, there exists $u_1 \in X^+$ such that $u = v_2 u_1$ and $\lg(v_2) = \lg(u_1)$. Since $\lg(u) < \lg(v)$, i.e., $\lg(v_2 u_1) < \lg(v_1 v_2)$, we get $\lg(u_1) < \lg(v_1)$. As $u_1 <_p v$, there exists $v_3 \in X^+$ such that $v_1 = u_1v_3$. This together with $u_1v_3 <_s x$, $v_3v_2 <_s x$ and $\lg(u_1v_3) = \lg(v_3v_2)$ yield $u_1v_3 = v_3v_2$. Hence $v_2u_1v_3v_2v_2u_1v_3v_2=(v_2u_1v_3v_2)^2\not\in P_1(x)$. This leads to a contradiction. Let $uv^n=x^2y$ for some $x, y \in X^+$. If $u <_p v$, then $uv \notin P_1(x)$. This leads to a contradiction. If $u <_s v$, then $uv^2 \notin P_1(x)$. This leads to a contradiction. Therefore $u \nleq_p v$ and $u \nleq_s v$. Case 1: There exist $v_1, v_2 \in X^+$ such that $v = v_1 u v_2$. If $\lg(v_1) \leq \lg(v_2)$, then $v_1 <_p v$ and $v_2 <_p v$ imply that there exists $v_3 \in X^*$ such that $v_2 = v_1v_3$. Thus $v = v_1uv_1v_3$. Therefore $uv \notin P_1(x)$. This leads to a contradiction. If $\lg(v_1) > \lg(v_2)$, then there exists $v_3 \in X^+$ such that $v_1 = v_2 v_3$. Thus $v = v_1 u v_2 = v_2 v_3 u v_2 = v_3 u v_2 v_2$. This implies that $v_2 v_3 u = v_3 u v_2$. Therefore there exist $w \in X^+$ and $m, q \ge 1$ such that $v_2 = w^m$ and $v_3 u = w^q$. There also exist $w_1, w_2 \in X^*$ and $q_1, q_2 \geq 0$ such that $v_3 = w^{q_1}w_1$ and $u = w_2w^{q_2}$, where $w = w_1 w_2$ and $q = q_1 + q_2 + 1$. Thus $v = w^{2m+q}$. If $q_2 = 0$, then $u = w_2$. Therefore $(w_2w_1)^2 <_p uv$. This leads to a contradiction. If $q_2 = 1$, then $u = w_2w_1w_2$. As $w_1 <_p v$, $(w_2w_1)^2 <_{\mathbf{p}} uv$. This leads to a contradiction. If $q_2 \ge 2$, then $u = w_2w^2w^{q_2-2}$. Therefore $(w_2w_1)^2 <_{p} u$. This leads to a contradiction. Case 2: If there exist $u_1, u_2 \in X^*$ such that $u = u_1 u_2, u_1 <_s v$ and $u_2 <_p v$, then there exists $v_1 \in X^+$ such that $v = u_2 v_1 u_1$. We get $u_2v_1u_1 = v_1u_1u_2$. Thus $uv^2 = u_1u_2u_2v_1u_1u_2v_1u_1 = u_1u_2v_1u_1u_2v_1u_1u_2 = (u_1u_2v_1)^2u_1u_2$. This leads to a contradiction.

3. Conclusion

Proposition 2.4 tells us that when we want to check whether or not uv^+ is a p-primitive word for the case $\lg(u) < \lg(v)$, we just check the characters of u and v whether they are in the statements of Proposition 2.1 to Proposition 2.3 or not. We conjecture that the cases for $\lg(u) = \lg(v)$ and $\lg(u) > \lg(v)$ have same results which are left for our further research.

References

- R. C. Lyndon and M. P. Schützenberger, The Equation a^M = b^Nc^P in a Free Group, Michigan Math. J., Vol.9 (1962), 289–298.
- [2] H. J. Shyr, Free monoids and languages, Lecture Notes, Institute of Applied Mathematics, National Chung-Hsing University, Taichung, Taiwan, 1991.

[3] H.J. Shyr and S.S. Yu, Regular Component Splittable Languages, Acta Math. Hungar., Vol.82 (1998), 219–229.